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By Carl Kaplan
SUMMARY

The problem of the present paper has been chosen for the purpose
of exhibiting some of the possible mathematical troubles that may occur
in the iterative procedures so much in use in present-day aerodynamics.
First, it is shown that the example of incompressible flow past a sinus-
oidal wall of finite amplitude should properly be treated in the plane
of the velocity potential and the stream function rather than in the
physical flow plane. Then, two contrasting iterative procedures are
utilized for the solution of this particular problem. One is the well-
known small-disturbance method in which the physical-plane coordinates
are determined in the form of Fourler series whose coefficients are
analytically developed as series in ascending powers of the amplitude.
In general, this method precludes any discussion of convergence, the
tacit assumption being that no mathematical limitation intervenes before
the solution ceases to be valid because of some physical reason. The
other procedure is to state the problem in the form of an integral equa-
tion whose solution can be found by a process of successive approxima-
tions. The convergence of this method can usually be judged when the
difference between any two successive approximastions is deemed negli-
gible. An included numerical example serves to emphasize the superior-
ity of the integral-equation aspproach over the small-disturbance method.

INTRODUCTION

In the nonlinear treatment of stationary compressible flows, the
methods utilized very often involve developments in series and succes-
sive approximgtions. One of the most widely used of these methods is
the Prandtl-Busemann small-disturbance procedure for the calculation of
two-dimensional compressible flow past a thin profile. According to this
method, the velocity potential or the stream function is developed in
povwers of the thickness coefficient with the thin profile placed at a
vanishingly small angle of attack in a uniform stream of Mach number less
than unity. Thus far, no strictly mathematical investlgation has been
mede on the convergence of this small-disturbance procedure. Indeed,
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the labor increases so rapidly with the order of the approximation that
usually only two or three steps can be calculated; thus, any possible
rigorous statement on the question of convergence 1s eliminated. The
first step in this method of iteration being the undisturbed stream
itself, the decisive element in the convergence of the process is the
tacit assumption that no purely mathematical limitation sets in before
the breakdown of the flow due to some physical reason (for example, the
attainment of sonic velocity at some point in the field of flow). That
such mgthematical difficulties can appear, even without the complication
of compressibility, is illustrated in the problem treated in the present
paper, namely, incompressible flow past. a sinusoidal wall of finite
amplitude. This s80l1id boundary has been chosen chiefly because the basic
assumptions of the small-disturbance method are adhered to, there beilng
no stagnation points or points of infinite velocity in the field of flow,
and because numercus iteration steps can be achieved without undue lgbor.
Moreover, it was found possible to solve the problem independently by
means of an integral-equation approach mich in the manner of the arbiltrary-
airfoil theory of Theodorsen and Garrick (ref. 1). A comparison of these
two modes of solution clearly reveals basic weaknesses in the smgll-
disturbance method when it 1is utilized for the purpose of approximating
analytically the exact solution of a flow problem.

It may be mentioned that the sinusoidal wall in two dimensions and
its exisymmetric counterpart, the corrugated cylinder, have in the past
been of considerable aid in the solution of various problems in aero-
dynamics (refs. 2 to 7). It is believed that the material of the present
paper may be found useful in the treatment of such diverse problems as
panel flutter and the hydrodynamic theory of water waves of finite
amplitude.

ANATYSIS
General Formilas
When the Prandtl-Busemann small-disturbance method is utilized to

obtain the two-dimensional incompressible flow past the wavy wall

¥y =€ cos X

the complex potential of the flow w can be represented in the following
fashion:

o]

w=¢+i\y=z-!2'-iBo(e)-iZBn(e)einz (1)

n:
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where

X,¥ nondimensional rectangular Cartesian coordinates, radians

z =X + 1y

€ emplitude of wavy wall, radians

1) nondimensionsl velocity potential

v nondimensional stream function

Bn(e) real quantities presumed to be expansible in ascending powers

of €

and where U, the undisturbed stream velocity, and A, the wave length
in radians, are utilized as unlts of velocity and length, respectively.

According to equation (1), it is tacitly assumed that w 1is an
analytic function of 2z along and above the solid wavy wall. However,
the covergence of the series appearing on the right-hand side is con-
fined to the broadest strip which is parallel to the x-axis and is
devoid of singular points of w (ref. 8). Thus, in order for this
series to represent w on and above the sinusoidal boundary, w mst
be free of singularities 1n a strip containing the boundary. There is
no assurance, however, that such singularities do not appear in the
portion of the strip below the wavy wall as soon as the solid boundary
departs from & stralght line. Therefore, the solution in the form of
equation (1) is not always valid and may even be divergent for e > O.

The rather surprising statement that the small-disturbance itera-
tion method cannot always be epplied in the physical plane to the pro-
blem of flow past a sinusoidal boundary poses the question of what is
the correct mathemstical epproach to this well-defined flow problem.
The answer is simply that the problem should be treated in the ¢¢—plane,
where the sinusoidal boundery y = € cos X 1is replaced by the straight
line ¢ = 0. Equation (1) is then replaced by

Z =W+ % iAg(e) + 1 gz; An(e)einw (2)

where the right-hand side represents & complex function of w which is
now analytic in the entire upper half-plane. The coefficients Ap(e)

are real quantities presumed to be expansible in ascending powers of €.
No boundary condition need be stated in the @ directions because the
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solution is periodic in ¢; vwhereas for ¢ = «, the complex velocity is,

as it must be, % = 1. Expressed in real form, equation (2) is equiva-

lent to the pair of equations

x=@ - E An(e)e™™sin ng (32)
n:
and
y =¥+ 5 Aole) + > hae)eRleos nf (3v)
n:

At the solid boundary, + = O; therefore,

=Q - si L
x=0¢ n§= An(€)sin ng (k=)
and
€ cos X = % Ag(e) + i: An(e)cos ng (4b)
n=L

From equation (4b) (since € cos x is an even periodic function of @),

5t
An(e)=§ef cos x cos n@ dg (n=0,1,2,...x)
0

Inserting the expression for x given by equation (4a) into this equa~
tion yields the following formula:

An(e) = 3—%— eth cos nf cosE - mZ Ap(e)sin mgldgﬁ (5)
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If the quantities An(e) are assumed to be expansible in a serles of
ascending powers of €, equation (5) represents the recursion formila
for the determination of the coefficients of these series. Preliminary
calculations show that the An(e) can be expressed as

L ao(e) = Zl Bome ™ (62)
m=

An(e) =‘z§; apmettam (n=1,2, .. .x) (6b)

vwhere the apy are numerical coefficients uniquely determined by

repeated use of equation (5). Thus, the initial step in the determina-
tion of the apy 1s to obtaln &y, the coefficient of the first term

of the series for Aj(e). From equation (5), insofar as the first
power of € 1is concerned,

A (e) = % e‘/gn cos?P af = ¢

or

ajo = 1

The second step is to obtain the first term in the power-series develop-
ment of Ap(e). Thus,

A1

it
Ao(e) =S ¢ Jg cos 2@ cos(f - € sin @g)ag




6 NACA TN 3069

This expression for An(e) is easily evaluated with the aid of the
well-known Jacobl expansions in series of Bessel functions; namely,

cos(e sin @) = Jg(e) + 2 i Jon(€)cos 2ng
n=1

sin(e sin @) = 2 i Jonsy(€)sin(en + 1)¢
n=0

and the power-series expression for Bessel functions of the first kind

Tale) = > (-1)F €2

0 225! (i + n) !

Insofar as the second power of € is concerned, the result is

Ax(e) = - % e
or
=_ 1
ap0 = 5
Similarly,
5 7
Ap(e) = ej; cos(@ - € sin @)ag
or
< ag(e) = % €2
and
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In this manner, the power-series developments for An(e) can be system-
atically constructed. Table I lists values of the coefficlents app

sufficient in number to determine the solution, equations (3), to the
order €.

Examination of table I shows that the general formula for the set
of coefficients anp can be written as

-1
ano = —(—l)n —2—% (n = l, 2, o o o OO) (7)
n.
and that
> Appale) = ¢ (8)

n=1

Moreover, from equations (4), it can be seen that

%Ao(e) +§: Ag(e) = ¢
n=1

Thus, with the aid of equation (8), it follows that

o0

L ag(e) = - > enle) (9)

n=1

From considerations of symmetry, the ares under the boundary curve
for one wave length is zero; that is,

25
— f yadx =0
0
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Then, by means of equations (&),
at 2]
f -é: Ao(e) + i Ay (€)cos n{“} - Z mhp(e)cos m{ld{é =0
0 n=1 m=1

or

% a0(e) =L > aaP(e)

n=1

Comparison with equation (9) shows that
1 i 2 >
= na2(e) = - > Apn(e) (10)
n=1 n=1

Linearized Case

In the linearized case in which terms involving only the first
power of € are retained, equations (3) become

x=@¢ - eeVsin ¢ (11a)
and
y=v+ ee VYeos 1) (11v)

It is interesting to note that equetion (11a) is similar to one that
Bessel discussed in connection with Kepler's eccentric-anomaly problem
(ref. 9). Corresponding to Bessel's solution,

g=x+2 Z % n(nee"‘l")sin nx (12)
n=1

The process by which this result 1s obtained gives no information as to
the conditions under which the expansion on the right-hand side is
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posgible. Therefore, until the interval of convergence has been deter-
mined, it 1s not legitimate to discard terms involving powers of €
higher than the first. However, the series in equation (12) is a

Kapteyn series which converges rapidly when eV <1 and is convergent

even for ee”V = 1. Thus , for the linearized case where € << 1, only
terms involving the first power of € need be retained. The reversion
of equations (11) then yields

@ =x+ eceVsin x
(13)

¥ =y - eeYeos x

which are 1n agreement with the results obtained when the linearized
case is treated in the plane of flow. This result is not in contradic-
tion with the statements mede with regard to equation (1), because for
the case of vanlishingly small €, the boundary condition of zero normal
velocity is satisfied along the real axis y = O.

Numerical Exemple of a Wavy Wall of Finite Amplitude

In choosing a numerical example, it is kept in mind that € should
be less than one but yet should correspond to a wavy wall of moderate
amplitude. Thus, the value € = 0.70 corresponds to a wavy wall whose
amplitude is about one-ninth of the wave length. The conversion of
results obtained in the ¢1]r—pla.ne to results in the physical flow plane
is easily made by means of equations (3). Indeed, these equations are
particularly well-suited for the comstruction of streamlines, which is
usuelly a long and tedious computation. Equation (3a) shows that ¢
1s a continuously increasing function of x, such that the effect of
increasing x by 2¢ is to increase ¢ by 2r. Moreover,

§ An(e)e™™sin ng 1s an odd periodic function of x and, hence,
n=1

calculations need be made only for the interval 0 £ x S =n.
The following formilas are to be utilized for the calculation of

fluid speed and pressure coefficient at the surface of the wavy wall.
From equation (2),

aw 1

— =1u~ 1v =
dz

1- § nAp(e)e™™eos ng - 1 § nA,(e)e™™sin ng
n=1 n=1
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where u = é@ and v = QQ are the components of the fluid velocity

ox
in the direction of the x- and y-axes, respectively.

The magnitude of the fluid velocity at the solid boundary ++ = O
is given by

‘12 = ; = ) (lll')
E— i nhA,(€)cos n{] + Z nAn(e)sin n{l
n=1 n=1
Tn particular, the meximum and minimm speeds occur at $ = O and
¢ = 5t, respectively; thus,
dmax = = (152)
1- 2> nay(e)
n=1
and
1
q] in = (l5b)
1= (-1ag(e)

=1

The pressure coefficilent Cp> obtained by mesns of Bernoulli's
theorem, is given by

Cp=l-q2 (16)

The coefficients An(e) have been developed as power series in €

in the form given by equations (6). Actually, there is no basic reason
why these coefficients should be expressed in this fashion. In fact,
this power-series representation of the coefficients Ap(e), although
suitable enough for wavy walls of small amplitude (e << 1), may not be
suitable for walls of even moderate smplitude (e < 1). Moreover, it
would appear that for walls of small amplitudes the linearized results
given by equations (11) or (13) suffice and that the lsbor expended in
obtaining the coefficients apy 1is hardly worthwhile. Therefore, in
order to obtain results appropriate for values of the amplitude € of
the order of unity, for example, some system of approximation other
than power-series development in € must be adopted. The most obvious
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one is that first introduced by Stokes in connection with his work on
the theory of oscillatory waves (p. 317 of ref. 10). Stokes' method
of approximation is to proceed according to powers of the first coeffi-
cient A]_(e). That this approach is an independent one can be seen
from the recursion formula (eq. (5)) since € appearing therein can be

[=2]
replaced by the sum g App_1(€) (see eq. (8)). However, the coeffi-
n=1

clents an, already listed in teble I can be utilized to obtain the
expressions for As(e), Asz(e), . . . as series in ascending powers

of Aj(e). They are as follows:

1,54 373 6 8
= - =A7" + AC o+ A"+ . ..
A 5 15 x 2f 9 x 29
_ls,5 6031 7, 329 ,9 g
= == l+. 1
% 384 45 x 22 3 X 2 (a7)
A6=..g-{...A6+112039 A8+. .
80 315 x 210

o 531kl 9 _
% 35 x 212
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From equation (8), it follows that

3,3 3 4.5 823 T 26551 9 _
A + £ A7 + = A0+ —— A+ AT L L= 18
1T T 67T Tgme T ys x ol T ¢ (8
and from equation (9), it follows that
Lo 12,1,k % , 6,119 ,8
sho=zh +i M vy +3072Al + .. (19)

Note that with the exception of the first coefficient, where the values
are the same, the coefficients of the power series in A3 shown in
equations (17) are consistently and substantially less than the corre-
sponding coefficlients of the power series in €. Moreover, for a glven

value of €, the corresponding value of Ay is less. Thus, for € = 0.70

the value of A;, obtained from eguation (18), is 0.60. The values of
the other coefficients calculated by means of equations (17) and (19)
are as follows:

Ap = -0.169 Az = 0.070 A, = -0.037
As = 0.021 Ag = -0.010 A7 = 0.006
1 =

5 Ao = 0.220

These values of A, when introduced into equationms (4) reproduce

well the boundary curve ¥y = 0.70 cos x; other streamlines (with ¢ > 0)
will be even more accurately computed because of the presence of the
factor e-B¥ in equations (3). Figure 1 shows the wavy wall for

€ = 0.70 and the streamlines which were calculated by means of eque~
tions (3) for values corresponding to V¥ = %, -]2'—, 1, %, and 2. However,
when these values of A, are inserted into equations (14) and (16) in
order to obtaln the fluid speed and the pressure coefficient at the
surface, the resulting points are scattered in a manner which indicates
a slow convergence of the derived series which appear in these equations.

It is clear that, for wavy walls of even moderate amplitude,
further analytical development of the coefficients An(e) is of little
avalil because on the one hand a large number of terms of the series
would have to be taken, and because on the other hand the labor of the



NACA TN 3069 15

approximation increases inordinately with the order of the terms.
Therefore, some independent method must be found which avoids the
necessity of determining enalytically an infinite number of coefficients.
This statement may very well epply to flow problems in genersasl when the
exact solution is to be approximated in some manner by an iterative
procedure. For the present problem, such a method is described in the
following section.

Integral-Equation Approach

From equation (4b),

5t
An(e) = % e\/n cos x cos n@ dg (n=0;1,2, ... . )
0

The evaluation of the infinite number of coefficients Ap(€) can be

made to depend upon a single equation which is obtained by eliminating
An(e) from equation (4a). Thus,

x=¢ - % € :;i-sin n¢‘/gJt cos x' cos ng' dg' (20)

vhere x' denotes x as a function of @'. The order of the two
processes summation and integration cannot immediately be transposed,
because the series would not be convergent. However, equation (20)
mey be regarded as the limit of the expression which is obtained by
introducing r2 into the general term of the series, vhere r is a
quantity less than 1 and in the limit is equal to 1. Thus, summing
the series .

2{; rPsin nf cos ng'
n=

leads to

x=g- El/;“{:.- r sin(@¢' + @) ) r sin(g' - @) cos x' ag"

or cos(@' + @) + r2 1 - 2r-cos(g' - §) + r2
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In the limit r—s1,
T
x=@ - é%\jg [Eét %(¢' + @) - cot %(¢' - ¢£]cos x' ag'

and, after integrating by parts,

4 -x = f-sin ¢‘jfﬂ cos x' ag' (21)

o cos @' - cos @

This is & nonlinear integral equation closely related to the one derived
by Theodorsen and Garrick as the basis of their arbitrary-airfoil theory.
In fact, the procedure of solving it is precisely the one devised by
Theodorsen and Garrick and described in detail in reference 1. Thus, a
solution is sought, not by development in series according to some
parameter, but by the following procedure of successive approximations:

Iet ¢k be an approximation of the velocity potential found in
any mesnner whatsoever. Imnserting this.approximation into the right-
hand side of equation (21) results in an jmproved approximation @i].
In the same manner, further aepproximations ¢k+2’ ¢k+3’ . « . are

obtained until the iteration ceases, that is, until a pair of succes-
sive approximations is no longer distinguisheble within the limits of
the desired accuracy. Thus, equation (21) is written as follows:

cos x' ag’

_€
¢k+l‘x’ﬁ51n¢kj:cos¢k,-cos¢k (22)

Following the idea of Stokes, @ is taken equal to x + Aj(€)sin x.

Then to the second order of approximation,

cos x' ag,’

b - x = E.Sin ¢0 JCﬁ cos Po' =~ cos &, (23)
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Now, according to reference 9 (compare with egs. (1la) and (12)), it
follows that x as a function of @y 1is given by

x = @o + il %(-l)an(nAl)sin nfdy (A1 € 1)

and

[25]

cos x = L Ay - (-1)" Jo-1(nh1) - 7.4 (nfy) ¢
T2l T L T [Tn-1RL T dny) L) (C08 1o

Hence, with the aid of the well-known definite integral

0 cos @' - cos ¢ sin @

Jf“ cos ng' ag' . 5in ng

equation (23) yields

frox=-c> T[T i) - splomfemngy (@)

n=1

or

[e.1) n
§y =x- ¢ Z ('Ill) Jp-1(nty) - JD,,l(nAlﬂ sin n(x + Ay sin x)
jat

From this point 1t is not feasible to contime this process in a com-
pletely analytical mammer. For a given value of Aj < 1, however, it
is a straightforward computation to tebulate corresponding values of
x and @y in the range O to s and, by means of a Fourier analysis,
to express cos X as a cosine series in @;. (See eq. (25) for means
of calculating the value of Aj corresponding-to a given value of €.)
Then, from equation (22), @fp - x is obtained as a sine series in (.
In constrast to the analytical development of the coefficients as power

\
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series in €, this method for solving the integral equation (21) can be
continued indefinitely without increase in the amount of computational
labor for each step. It is clear that, in the limit k—>«, this pro-
cess yields equation (4a) but, in practice, it is terminated when the
difference between two successive approximations is deemed negligible.

For values of Al( €) greater than unity, the approximstion
fo = x + Ay(e)sin x 1s not valid because x then becomes a miltiple
root of this equation in the range O S x < 1. The requirement is that

be a continuously increasing function of x within this range at

every stage of the iteration procedure. For Aj > 1, a plausible
beginning would be @ = x + sin x; it mey be presumed that this initial
relationship between x and ¢0 leads to a convergent process up to a
certain value of €. The last valid relationship between x and
would then again be taken as the beginning of the iteration procedure
for a still higher range of values of €. This process of continuation
may presumebly be carried on indefinitely.

Now, for some range of values 0< A; < 1 (but possibly for values
of € > 1), equation (24) may be considered accurate enough to terminate
the process of iteration. That is, approximately,

x=@+e i (_l)nE -1(13-“-1)- - Jn+l(nAl):lSin ng

n=1 I

Comparison of this equation with equation (4a) shows that
n—.
An(e) = -¢ ki—)-En-l(nAl) - Jn+1(nA1):| (25)

Note that for n = 1,
A (e) = €Eo(Al) - Jg(Alﬂ

which provides a transcendental equation for the determination of Aj
for a given value of €. With the use of the recurrence relation

2 dJp(nay)

In-1(nA1) - Jpsa(ndy) = = ™
_ 1
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it follows that

(-1)® dJpn(naz)

An(e) = -2¢ -
n2 day
Then
Z“ B a <= Jpp1[(en - 1)a1]
Aan_l(e) = 2¢ — 5
n=1 dAy n= (en - 1)
However,

2— Jopn.1 (211—1)A]:l
L

(en - 1)2

and hence (see eq. (8))

2]

Z Appq(€) = ¢

n=L1

Agein (see eq. (9))

or

17
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But

f: Jop(anf1) 12
n=1 n? 2

and hence,

€Ay

o=

%Ao(e) =

Then to the second order of approximation, equations (3) may be written
as

=@+ e Z -(—)—l:n_]_(nAl) - Jn.,.l(nAlEl e Wsin ng

n=1

=v+3 eAl € Z l)nE -1(na3) - Jn+]_(nAl)] e ™Mcos ng (4 < 1)
n=1 J

(26)
(2]
It is of interest to examine the sum S = Z nAn(e)sin ng which

=1
appears in equation (14) for g2. To the second order of approximation,

n
S = -¢ '§ (-1) [Jn_l(nAl) - Jn.,.l(nAlZ‘ sin ng (e1)
n=1
Now, by defining a new varigble p by the equation
§=p+4 sinp

then

p=¢+ Z 2(- l) Jn(nay)sin ng

n=1
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and )
_1 i (-1)"
cos p =35 A - . a Ei _1(nay) - Jn+l(nAi§]cos ng
n=
Hence,
sin p % = - i (-1)nE -1(na3) - Jn.l.l(nAlﬂ sin ng
n=
or, since W _ =

a 1 + Ay cos u,

g-_¢€ sin p

(€108 s n)
1+ Aj cos p

The graph of S as a function of @ for the case € = 0.70 (and
Ay = 0.606 from eq. (25)) is shown as the solid curve in figure 2.
The circles correspond to the evaluated series, equation (27), with

n=1to 2k. The values of A, according to the second order of
approximation are

Ay = 0.606 Ap = -0.164 Az = 0.067
Ay = -0.033 A5 = 0.017 Ag = -0.010
A7 = 0.006 £ A = 0.212

These values agree remarkably well with those obtained by the method of
Stokes. Note, however, that only one step was needed in the solution
of integral equation (21) to achieve the accuracy of nine increasingly
laborious steps according to powers of the first coefficient Al(e).

The plus signs in figure 2 correspond to points computed with the Stokes
values of A;. The scattering of these points, particularly in the
critical portion of the curve, is due to the slow convergence of the
series for S with only the first few terms availsble and presages
inaccurate determination of the derived quantities, fluid speed and
pressure coefficient at the surface of the solid boundary. Here again
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the superiority of the integral-equation approach is demonstrated in
that the second-order epproximation provides an aenalytic form for the
general coeffficient An(e) (see eq. (25)). Table IT lists the results
of the calculation of fluid speed and pressure coefficient at the sur-
face of the wavy wall to the second order of approximation, and figure 3
shows the corresponding graphs for an interval of one wave length.

In conclusion, the analysis of the present paper indicates the
general undesirsbility of determining the velocity potential or the
stream function in the form of a series whose coefficients are ana-
lytically developed in a power series of some parameter. Rather, the
flow problem should be set up in the form of an integral equation whose
solution can be obtained by a method of successive approximations. If
this course is not possible, the parsmeter for the analytical develop-
ment of the coefficients should be chosen so as to insure rapid con-~
vergence of the series. As the example of the present paper shows,
this parameter may not be the most obvious one.

Iangley Aeronauticel Lsboratory,
National Advisory Committee for Aeronsutics,
Langley Fleld, Va., November 25, 1955.
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TABIE I.- COEFFICIENTS &y,

NACA TN 3069

8nm
m=20 m=1 m = 2 m=3 m=X4
1 -1 n L
2 8 192 4608
1 _3 15 71 82649
8 6l 9 x 210 | u5 x 2l¥
-1 ea _ 16649
2 ol 128 ¥5 x 210
3 _ 215 683 _ 262801
8 38k 1024 45 x 215
1 1333 _ 11873
5 15 x 27 45 x 2
125 _ k0187 190849
38l y5 x 210 | 15 x 212
2 356985
80 %15 x 210
T |_ _ 48710981
45 x 210 105 X 2]-5
_ 128
315
96




TABIE IT.- CATCULATED VAIUES CF FLUID SPEED AND PRESSURE COEFFICIERT

2
i nhAy coe n¢
n=

2k 2l 2
i 8 sin n cos n¢inAnsin ng X q

¢ o IS o oA ;

o .0 0 0 0.4879 0 0.h0L 0 1.670]-1.789

ﬁ A96|( 217 3063 4033 .218 367 479|149k [-1.232

% 1.046| 465 5523 1385 J65 .238 1.019]1.120} ~.254

%1 1.490| .665 .6300 -.1559 665 O34 1464 | 852 .273

%g 1.760| .76 .6162 - 3h45 776 -.153 1.7%0| .720| 482

%?_ 2,095| .870 L5177 -.5610 .869 -.165 2.100| .587| .656
0.864x[2.222]| 880 ~eemem | mmmmme | emmee | mmemmes e e e
%éﬁ 2.53% | 795 .55i3 -. 7867 .T95 ~-1.019 2.529| 461 .788
e loorr| | on | s | s | aso |esrs] ] e

x x |0 0 -.9121 0 -1.550 x| .392] .846
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Figure 3.- Fluld speed and pressure coefficlent at surface of wavy wall,
y = 0.70 cos x.
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